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Summary 

An analytical treatment is presented which permits the prediction of the strength and path of leading-edge 
vortices on thin wings of delta-like planform from a knowledge of the behaviour of the linearized approximation 
to the attached flow past the wing. This supplements the leading-edge suction analogy, which predicts the forces 
and moments acting on the wing from the same input. The fundamental assumption is that the vortex lies close 
to the leading edge. It is represented by a single line-vortex and the presentation is confined to low-speed flow 
and plane wings. The treatment is independent of the way the basic attached flow is calculated. Results a r e  

shown for two simple planforms, using inputs from three-dimensional lifting-surface theory and from slender-body 
theory. 

1. Introduction 

The leading-edge suction analogy of Polhamus [1], as developed in a series of papers from 
the Langley Research Center of the NASA, has proved a useful tool for predicting the 
forces and moments on sharp-edged wings with leading-edge vortices. However; it does 
not provide any information about the behaviour of the vortices themselves. Methods 
capable of predicting the strength and position of the vortices are either more complex 
and expensive to use or fall back on the approximations of slender-body theory. The 
present paper describes a method for calculating the strength and position of the vortices 
within the framework of lifting-surface theory and the suction analogy, with little 
additional computation. In its present form, the method is limited to plane wings at low 
speeds, and to flows involving the formation of a single vortex from each leading edge, but 
extensions are easily envisaged. 

The method rests on two assumptions. Fundamentally, we suppose that the leading-edge 
vortex lies in the immediate neighbourhood of the leading edge, as it does at small angles 
of incidence. The second assumption is that the vortex can be represented by the 
combination of a line-vortex and a cut joining the line-vortex to the leading edge, as in the 
treatment of Brown and Michael [2]. There is numerical evidence [3,4] that this is a good 
approximation to the vortex-sheet model at small angles of incidence. The first assump- 
tion enables the problem to be expressed in a two-dimensional form; the second 
assumption makes the solution of that problem very simple. The analytic form of the 
solution found resembles that which arises from the further assumptions of slender-body 
theory, but the numerical magnitudes are significantly different. 
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As examples, two planforms with semi-apex angles of about 27 ° are considered, one a 
delta of aspect ratio 2, and the other a "mild gothic", with a streamwise tip and a curved 
leading edge. Numerical results are presented for the position and strength of the vortex 
by the present treatment and by slender-body theory. 

2. Analysis 

We consider the flow of an essentially incompressible uniform inviscid stream of speed U 
past a plane wing at a small angle of incidence a. The leading edges of the wing are swept 
back through a local angle A, and are sharp enough for the flow to separate along them. 
The thickness of the wing is ignored. We use a Cartesian coordinate system (X, Y, z) to 
describe the global flow, with origin at the wing apex, OX along the wing centre-line, OY 
to startboard and Oz upwards, as in fig. 1. To describe the flow near the starboard leading 
edge, we introduce a local orthogonal coordinate system. The leading edge itself is a 
coordinate line, and x is the distance measured along it in the downstream sense; y is the 
distance along the outward normal to the leading edge in the plane of the wing, and z is 
the distance normal to the wing plane. The element of length in the x-direction is 
h(x, y)dx, where h(x, 0) = 1; the elements of length in the other directions are dy  and 
dz. Then the velocity potential, ¢, of the three-dimensional flow satisfies the continuity 
equation 

8-~(h~-~)  + 3 y ,  8 y J + ~ z (  --~-z] =0" (1) 

must also satisfy the appropriate boundary conditions: its normal derivative vanishes 

~× 
Figure 1. Systems of coordinates. 
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on the  wing and it behaves like a uniform stream at large distances. Since the angle of 
incidence is small, we can expand • in powers of a, 

¢ } = D  o + o t ~  a+  . . . ,  (2) 

where D 0 is the potential of the uniform stream and a~ 1 is the first-order approximation 
to the disturbance potential due to the wing at incidence. 

The defect of this conventional attached-flow solution is that it does not satisfy a Kutta 
condition at the sharp leading edge. We accommodate this non-uniformity of the solution 
at the leading edge by introducing a representation of the circulation which is shed from 
the edge. For small angles of incidence, the circulation will be confined to the neighbour- 
hood of the edge itself, and it emerges that the flow there may be treated in the 
slender-body approximation, so that the expansion technique of Clark, Smith and 
Thompson [5] may be employed. To establish this formally, we suppose that 8(a) is the 
length-scale of the vortex configuration at the leading edge, with 

8(a )~O a s a ~ 0 .  (3) 

8 is then the scale of the "inner" region, in which we introduce scaled variables 
distinguished by a tilde, 

y=Sy ,  z=8~., tb=M(x)U+8(b. (4) 

Here 

M'(x) = sin A(x)  (5) 

since 

h(x, y) =h(x,  O) + O(y) = 1 + 0(8).  

Introducing (4) in (1), we see that, to leading order in 8, ~ satisfies the two-dimensional 
Laplace equation 

82__._~_~ + a2_._~ = O. (6) 
Op 2 a~ 2 

The derivation requires that 8A'(x) << 1, so that the treatment may fail for leading edges 
with kinks. 

Any solution of (6) can be expressed as the real part of a complex analytic function of 
=p  + iL In particular, we may write the inner complex potential in the form 

ITv = UB(x, 8)2  - iUS~A(x)21/2 + f ( Z ) .  (7) 

In (7) the leading term corresponds to the component of the onset flow in the plane of the 
wing and normal to the leading edge, with B real. On the scale of the inner region, the 
wing is a semi-infinite plate, occupying the negative real axis of the Z-plane. The second 
term in (7) represents the flow around this plate. 8a, which depends on 8, is a real scale 
factor to be determined later; and, with A real, the negative real axis is a streamline. The 
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singular behaviour of the second term in (7) is related to the leading-edge suction force 
perpendicular to the edge in the plane of the wing; A ( x )  will be determined from the 
strength of this suction force in the outer solution. The final term in (7) is the contribution 
from the model of the vortex flow. It must be chosen so as to cancel the singular 
behaviour of the second term at the leading edge, to preserve the boundary condition on 
the semi-infinite plate, and to decay as Z --, ~ .  

In accordance with the standard procedure for matching asymptotic expansions [6], we 
form the outer expansion of (7), expressing it in the outer, physical, variables, 

W =  U B o ( x ) Z  - iUS ,8 ' /ZA(x )Z  '/2 + 0 ( 8 ) ,  

where Bo(x ) = B(x ,  0) and Z = y  + iz = r e i°. Taking the real part, we have 

qJ = UBo( x ) y + USlS1/ZA( x )r 1/2 sin(0/Z) + 0 ( 8 ) .  (8) 

This is to be compared with the inner expansion of the outer solution, which has so far 
only been expressed in the form of (2). We see at once from the terms of zero order in the 
small parameter a that 

Bo(x ) = - c o s  A ( x ) .  (9) 

To obtain a term of order a from (8) we must choose 8181/2 to be of order a, so that, with 
the constant of proportionality absorbed in A(x) ,  

81 = orS- 1/2(~x). (10) 

To determine A(x) ,  we suppose we have a solution for the attached flow past the wing, in 
the small disturbance approximation, say from lifting surface theory. This provides the 
loading coefficient 

AC. = Cp, .... - Cp . . . .  , (11) 

from which it is possible to obtain a measure of the strength of the leading-edge 
singularity at a point x, 

a ( x )  = lim nl/ZACp(x, n) ,  (12) 
rt--*O 

where n ( =  - y )  is the distance inboard of the leading edge along the normal to it. Now, 
in the small disturbance approximation, 

2 aA¢ 
/%= u a x "  

From (8) and (10), 

Aq~ = - ZaUA( x )n 1/2. 
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Hence 

-4 
OX Ox 3X 3n 

On 
- -  -2aU(A' (x )  sin A nl/2+ ½A(x) cos A H-1/2), 

3X 

so that A(x) is given by 

G(x) = 2aA(x) cos A ( x ) .  (13) 

Note that ,4, like G, is a dimensional quantity. 
We must now construct the last term in (7), choosing the simplest representation of the 

leading-edge vortex, the single line-vortex and cut, as used by Brown and Michael [2]. In 
order to simplify the treatment of the boundary condition on the semi-infinite plate, we 
use the mapping 

= 21/2, (14) 

which unfolds the negative real axis on to the imaginary axis in the ~-plane. With a 
line-vortex of strength F at the point ~" = ~v, and its image in the imaginary axis, (7) 
becomes 

171,'= UB(x, 8)~ 2 - iU31A(x)~ + ~ i  l n ~ -  ¢v 
~+ ~v 

(15) 

and ~'v are determined from the Kutta condition at the leading edge, and the condition 
that the total transverse force on the combination of the vortex and the cut joining it to 
the edge is zero. The Kutta condition of finite velocity at the origin of the Z-plane implies 
dl~/d~ --- 0 at ~ = 0, so that 

= 2~rU31A~v~v (16) 

~v + ~v 

The force on the line vortex arises from its inclination to the local flow direction, the 
transverse force per unit length being given by - ipF(veloci ty of fluid relative to vortex); 
this is equal to 

- ipI'(v I + iw 1 - ~ x  (MU)3 d ~ v  
dx )" 

(17) 

Here v I + iw I is the velocity induced at the vortex in the plane normal to the leading edge, 
given by 

v l - i w l =  lim (dl~  F 1 ). (18) 
z--,zv k d 2  2~i 2 - - 2  v ' 

and the second term in (17) comes from the inclination of the line vortex to the velocity 
component along the leading edge given by the first term of (4). We have again replaced 
h(x, y) by h(x, 0)=  1. The force on the cut arises from the pressure difference across it, 
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which is due to the growth in the strength of the vortex. The change in vortex strength 
implies a jump across the cut of d F / d x  in the component of velocity in the direction of x 
increasing, so that Bernoulli's theorem enables the jump in pressure across the cut to be 
obtained as 

- p ~ x  ( M U )  d~ 
d x "  

The length of the cut is ~ I Zv I, so the force on it, per unit length of the vortex, is 

• d (MU)-~82v. W~x 

Equating to zero the sum of this and expression (17) gives, using (5), 

I ' (v I + iwl) = 3U sin A ~ x  ( I ' 2v ) .  (19) 

Introducing (15) into (18) and making use of (14) and (16) leads to 

l +  :v-¢v 
v:-iw I = UB(x, 3 ) -~ iUS:A(x )  ~'v (~v+ffv)  2 (20) 

To split (19) into its real and imaginary parts we introduce 

~v = o + iz. (21) 

Then, with v 1 and w: given by (20), and f" given by (16), the real and imaginary parts of 
(19) can be written as 

o 802(02 + r2 ) = 3 sin A(x)-d--~x 

(22) 

and 

18:AZ(x) = 6 sin A ( x )  ~-~( A ( x ) , ( o  z + "rE)). (23) 

Now, by virtue of the original scaling, neither o nor z will tend to infinity as a tends to 
zero. Hence the right-hand side of (22) will be of higher order than the left, and a balance 
between the two terms of lowest order can only be obtained if 02 is of the same order as 
81 . Writing 

o = ~ ] / 2 %  + . - - ,  • = ~0 + " " ,  ( 2 4 )  
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we see from (22) that 

A(x) 0 
B o ( x ) +  = 0 .  (25) 

8og 

With (24), the terms in (23) can only balance if 81 and 8 are of the same order. Taking 
81 = 8, so that, by (10), 

81 = 8 = 62/3, (26) 

we find from (23) that 

1 fo x A2(~)d~ (27) 
~°3 8A(x)  sin A ( ~ ) '  

where ~ is an integration variable corresponding to x, and x is measured from the point 
of origin of the vortex, e.g. the wing apex. It is perhaps worth pointing out, in relation to 
(27), that both % and A have the dimensions of (length) 1/2. 

Since A(x )  and Bo(x ) are determined by (13) and (9) in terms of the outer solution for 
attached flow and the planform shape, (27) and (25) determine the functions ro(X ) and 
ao(x ). In terms of these, the vortex positions can be expressed, to leading order, in the 
original outer variables by (4), (14), (24) and (26) as 

Y V  = __ ~ 2 / 3 , / . g ,  ZV = 2aOoro" (28) 

The strength, F, of the vortex in the outer variables is related to F in the same way as ~ is 
related to ~; so, by (4), F = 8F. Then, using (21), (24) and (26) in (16), we find 

r =   VA,g/ao (29) 

= 4~rUz v cos A, (30) 

by (25) and (28). 
The form of the variation of the vortex position and circulation with the angle of 

incidence is the same as that which arises from the use of slender-body theory [5] under 
the same assumption of small a. The difference arises from the determination of A(x) ,  
which can be written in closed form in the slender-body approximation. 

It is worth pointing out that, although in this very simple treatment the properties of 
the vortex are determined by the behaviour of the attached flow, they are not determined 
by its local behaviour. The integration process involved in (27) represents, in the most 
elementary way, the principle of the convection of circulation. This is in contrast to the 
determination of non-linear lift in the leading-edge suction analogy, by which the local lift 
is related to the local behaviour of the attached flow. 

Before going on to illustrate this analytical solution with numerical examples, we 
consider briefly how the expansion would be extended to higher order in the angle of 
incidence. In order to find the form of the next term in the outer expansion (2), we 
consider the outer expansion of the inner solution (7). The first and second terms in the 
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expansion (7) match with those in (2). The outer dependent variable corresponding to the 
third term in (7) is 

8F ln~'-~'v 17 ~'v+~v 
B f ( 2 )  = 2 ~ i  ~'+~v 2'~i 

- - +  o ( t -2 ) .  

The outer independent variable is Z = 8Z = r e i0, SO 

R e ( 8 f ( Z )  } = o t S / 3 U A , r o 2 r  - 1 / 2  sin 0 /2  + - . . .  (31) 

Equation (31) shows that, to effect a match with the inner solution, the expansion (2) mus t  
contain a term of order a 5/3. If the coefficient of this term is denoted by ¢2, then ¢2 is 
required to be a solution of Laplace's equation (1), to vanish at infinity, to have zero 
normal derivative on the wing surface, to behave asymptotically like (31) at each leading 
edge, and to satisfy a Kutta condition at the trailing edge. Calculating ¢2 would clearly be 
a formidable problem, which would have to be tackled before further terms in (7) could be 
constructed. 

3. Examples 

As pointed out earlier, the present assumptions break down at a discontinuity in the slope 
of the planform's leading edge. We therefore consider only planforms for which each 
leading edge forms a smooth curve. Since we are interested in vortex flows we also assume 
that the planform has a pointed apex from which the vortices originate. Planforms of this 
kind which are of practical interest have their leading and trailing edges meeting at an 
angular tip. Some degree of unreality must be expected in the solution at such a tip, since 
in the neighbourhood of the tip there is no length scale on which the wing resembles a 
semi-infinite plate. It turns out that different forms of unreality arise for delta wings and 
for wings with streamwise tips, so we consider one example of each kind. 

It is convenient to describe the planform by writing its local semi-span, s, as a function 
of the lengthwise distance, X, from the apex of the wing. The starboard leading edge is 
then given by Y= s(X) .  Then 

cos A =  s'(1 + s'2) -a/2, sin A = (1 + s'2) -1/2, 

and the element of length along the leading edge is 

dx  = (1 +s'2) l /2dX.  

Then (27) becomes 

1 s,2)dt ' 
• g =  8~4(x) f0XA2(/)( l+ (32) 

where A is now regarded as a function of X, and t is a variable of integration. 
The starboard halves of the two planforms are shown in Fig. 2. The first is a delta wing 

of aspect ratio 2, for which A is between 63 ° and 64 °. The second is a "mild gothic" wing 
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Figure 2. Pianforms considered. 

of aspect ratio 1.385. The planforms of this family have streamwise tips, but are closer to 
the delta form than is the more familiar parabolic gothic. The shape is specified by the 
local semi-span, 

s(X)=O.25s(c)(--~-- c ) 5 ) , 5 X  ( X  (33) 

with the trailing edge at X = c. For an aspect ratio of 1.385, we have 

s(c)=0.404c. (34) 

As can be seen, the forward parts of the wings are very similar. 
The lifting-surface theory program used to calculate G, and so determine A, is an 

unpublished program written by C.C. Lytton (formerly C.C.L. Sells) at RAE, and briefly 
described in [7]. In Fig. 3 the variation of A with the lengthwise coordinate X for the two 
planforms is shown by the solid lines. 

The two curves run together near the apex, reflecting the similar planform shapes there. 
The nature of the behaviour at the apex could be elucidated using the work of Medan [8], 
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Figure 3. Strength of leading-edge singularity in attached flow. 

but this is not necessary for the present purpose. For the delta wing, A is constant, so that 
A behaves like G, the strength of the singularity in the loading at the leading edge. This 
falls towards the rear of the wing, because of the upstream influence of the trailing edge. 
Very close to the tip, this fall becomes precipitous, and the behaviour is explained in the 
Appendix, with the help of Medan's results [8]. For the mild gothic wing, cos A also falls 
to zero at the tip, and it emerges that A remains finite and non-zero there. On the forward 
part of the wing, where A is very similar for the two planforms, A behaves like G, and is 
lower for the gothic because its span is smaller. Further back, the fall in cos A on the 
gothic leads to values of A which exceed those for the delta. 

Values of A calculated by slender-body theory for the same planforms are shown by 
broken lines in Fig. 3. The two curves now lie together for more of the length, because the 
solution upstream is unaffected by the smaller overall span of the gothic wing. For the 
delta wing, the linear growth of A is maintained to the tip, unaffected by the existence of 
the trailing edge. Over the forward part of the wings, slender-body theory underestimates 
the value of A because it ignores the upwash induced by the bound vorticity further aft. 
Despite these differences, slender-body theory provides a good overall estimate of A for 
the mild gothic planform. 

For this mild gothic planform, the results of using the lifting-surface theory values of A 
to determine successively ~0 by (32), o 0 by (9) and (25), z v by (28) and F by (30) are 
shown by the curves labelled "outer"  in figs. 4 and 5. The indefinite increase of Zv 
towards the trailing edge and the vanishing of F there both arise because o 0 and o 
increase indefinitely. This rapid rate of change of a means that (25) is not a valid 
approximation to (22) near the trailing edge, because the term on the right is large. This 
difficulty is resolved in the Appendix, by the introduction of a further inner expansion, 
this time centred on the trailing edge. By combining this inner expansion with the solution 
already derived and valid away from the trailing edge, which is labelled "outer"  in Figs. 4 
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Figure 4. Mild gothic planform: height of vortex above wing. 
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and 5, into a composite expansion valid along the whole leading edge, the more realistic 
solutions labelled "composite" in Figs. 4 and 5 are obtained. An unfortunate complication 
is that the composite solution involves more than one power of the angle of incidence. 
Thus, although the outer solution represented in Figs. 4 and 5 is independent of a, the 
composite solution is only exact for a particular value of a, chosen to be 10 °. It is 
approximately correct for other values, and the exact solution for other values can easily 
be obtained from the equations in the Appendix. The inboard displacement, Yv, of the 

1.0 
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P aUc 
0.6 

0.2 

I L I I 
0.2 0.4 X/C 0.6 0.8 1.0 

Figure 5. Mild gothic planform: circulation of vortex. 
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Figure 6. Inboard displacement of vortex from leading edge; symbols as in Fig. 3. 

vortex is not affected by this modification of the solution near the trailing edge, and no 
modification is required for the delta wing. The results for vortex height and strength on 
the mild gothic wing discussed below are all for composite solutions at a = 10% whether 
they derive from lifting-surface theory or slender-body theory. 

Figures 6 to 8 show the position and strength of the leading-edge vortex for each of the 
four determinations of A represented in Fig. 3, i.e. for the two planforms and the two 
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Figure 7. Height of vortex above wing; symbols as in Fig. 3. 
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Figure 8. Circulation of vortex; symbols as in Fig. 3. 

theories. To obtain the spanwise displacement of the vortex inboard of the leading edge, 
( -Yv)  has been multiplied by sin A, and this is shown in Fig. 6. For the case of the delta 
wing with A found from lifting-surface theory, the inboard displacement diverges to 
infinity in the immediate neighbourhood of the trailing edge as a consequence of the 
sudden fall of A to zero. This unreal behaviour is interpreted as meaning that the inboard 
displacement of the real vortex no longer scales with a 2/3 as the trailing edge is 
approached. Observation of real flows shows vortices lying almost streamwise, in plan 
view, where they cross the trailing edge. 

Apart from this local divergence, the inboard displacement of the vortex is scarcely 
affected by the presence or absence of the streamwise tip. In contrast, Figs. 7 and 8 show 
that both the height and circulation of the vortex are very different over the rear of the 
two planforms. (Note that the results for the gothic wing are based on the composite 
expansion.) On the wing with the streamwise tip the vortex is weaker and lies further 
above the wing than it does on the wing with the straight leading edge. Similar behaviour 
was found by Clark [9], using a vortex sheet model. He was able to identify the circulation 
of the opposite hand which was shed from the leading edge to produce the reduction in 
total circulation. Over the forward part of the wings, where the planforms are almost the 
same, the differences in vortex behaviour are small. 

The differences between the predictions of the different theories tend to be greatest 
over the forward part of the wings. This seems to arise because slender-body theory 
underestimates the strength of the edge singularity forward and overestimates it aft, and 
the effects of these discrepancies tend to balance over the rear part. Lifting-surface theory 
puts the vortex further inboard than slender-body theory, bringing it closer to the 
observed position. However, the change is small compared with the difference between the 
predictions of the single line-vortex model and the vortex-sheet model. Over the forward 
parts of the wings, slender-body theory considerably underestimates both the height and 
strength of the vortex, but this difference becomes smaller over the rear. The differences 
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are smaller for the mild gothic wing than for the delta wing, but it is not clear from the 
present limited comparison how far this is an effect of aspect ratio and how far it depends 
on planform type. 

4. Conclusions 

An analysis has been presented which leads to a simple description of the behaviour of the 
leading-edge vortices on thin, sharp-edged wings at small angles of incidence. The 
description relies on the same input from lifting-surface theory as the leading-edge suction 
analogy used to estimate the nonlinear forces and moments. 

A comparison with the use of slender-body theory shows differences which are not 
large, but might be significant. A comparison between two planforms of similar apex 
angles shows differences arising from the presence of a streamwise tip which are similar to 
those found earlier with a more elaborate, vortex-sheet, model in the framework of 
slender-body theory. 

Appendix: Tip behaviour 

Suppose that, as the tip is approached along the leading edge, the behaviour of the edge 
singularity and the sweep is described by 

G ( x )  - k , ( x ,  - x )  m a n d  cos  h ( x )  - k 2 ( x ,  - x ) " ,  

where suffix t denotes the value at the tip. Then the corresponding exponents in the 
quantities of interest are determined in sequence as follows: 

B ( x ) : n ,  by (9); A ( x ) : m - n ,  by (13); 

z o : l ( n - m ) ,  by(27) ;  % : - ~ ( 2 m - 5 n ) ,  by (25) ;  (A.1) 

y v : 2 ( n - m ) ,  Z v : - ½ n ,  by (28); 

F: ½n, by (29). 

For  a delta wing, n = 0; and for a regular (locally parabolic) streamwise tip, n = 1. Values 
of m for a delta wing follow directly from the work of Medan [8]; for a streamwise tip we 
resort to a plausible extension of his treatment. 

With polar coordinates r and 0 centred on a comer of the planform he shows the 
asymptotic behaviour of the disturbance potential is 

- r~f(O) for r small. (A.2) 

The exponent s depends on the angle at the comer: for the tip where a leading edge of 
local sweepback A t meets an unswept trailing edge, a minor extrapolation of Medan's 
calculations yields the values given in Table 1. The exact values for A t = 0 and 90 ° are 
s ~ 1 and 0.5. For the delta wing it is convenient to measure 0 from the leading edge. The 
familiar square-root behaviour at the leading edge means that (A.2) can be rewritten 

dp -- KrSO 1/2 (A.3) 



Table 1 

A t 10° 20° 30° 40° 50° 60° 70° 80° 
s 0.952 0.893 0.829 0.762 0.699 0.641 0.589 0.542 
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for 0 and r both small. Hence, to leading order, 

dpx -- ½KrS-lO -1/2 COS A t, 

and so, by (12), 

G = l i m o ( r O ) I / 2 4 d ~ x -  2 K  " --~-r  -1/2 cos A t. (A.4) 

For a wing with a curved streamwise tip we need a plausible generalization of (A.3). If  the 
tip is defined by 0 = g(r) ,  with 0 measured from the tangent to the leading edge at the tip, 
so that g(0) = 0, we propose the form 

d? - Krl/2(O - g( r))1/2 (A .5 )  

for O and r both small. It  then follows straightforwardly that 

2 K  
G---U--COS A ( x )  for r small. (A.6) 

Although we cannot claim more than plausibility for (A.5), the numerical results from 
lifting-surface theory do suggest that G tends to zero in proportion to distance from the 
tip, as (A.6) predicts. 

For the delta wing, (A.4) gives m = s - ½, so 0 < m < ½, while n = 0. hence, by (A.1), 
the strength and height of the vortex remain finite, while the inboard displacement tends 
to infinity as the tip is approached. 

For the streamwise tip, (A.6) gives m = n > 0. (A.1) shows that the lateral displacement 
is now finite, but the height tends to infinity and the strength tends to zero as the tip is 
approached. This unrealistic behaviour arises from the rapid variation in o as x ~ xt, 
which has been ignored in deriving the approximation (25) to the more complete equation 
(22). A similar difficulty has been discussed in [5], and here we follow the same approach. 
To obtain a solution to (22) which is more accurate near the streamwise tip, we must 
suppose that all the terms are of the same order. This is achieved by introducing a 
stretched streamwise coordinate ~. The appropriate stretching turns out to be 

C --  X ~- 0/1/3~, a = al/6l~o ( ~ ) ,  '7" = ~0 (~)" (A.7) 

Equation (23) then reduces simply to 7~ = 0. We have just shown that %, as given by (27), 
takes a finite value, say ~'t, at x = xt, so for this tip solution we can write 

= ',o = ' , t .  ( A . S )  

We can also write A ( x )  = A t ,  and, for a regular tip shape, 

Bo(X)  - x (x - ¢)  = 
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where  X 2 = B ~ ( x t )  > O, since d x / d X  = 1 at  X = c. In  this way (22) reduces to 

At 
60 d~ ,rt 2 

The  solut ion of  this  equa t ion  which matches  the behav iour  of  o 0, as ob ta ined  f rom (25), 
m a y  be  wr i t ten  as (see [5] for  detai ls)  

1 "2 z l  2 
~o z = '~ / ~-~-e" erfc ~/, ~ = h ~ / ' r  t. (A.9)  

A compos i t e  so lu t ion  for o, to leading  order ,  which is un i fo rmly  val id  up to X = c, can be 
ob t a ined  in the usual  way  [6] by  add ing  the inner  and  outer  solut ions  and  subt rac t ing  the 
ou te r  expans ion  of  the inner  solut ion.  W e  f ind 

At,rt ]1/2 
o 60 ~- o o - (c  - X )  - x / z .  (A.10)  

I t  is o//otl/31 as given by  (A.10), that  mus t  be used in place  of  o 0 in (28) for Zv, and  in 
(29) for F, for wings with s t reamwise  tips. Equa t ion  (30) no longer  holds  for wings with 
s t reamwise  tips. I t  is easy to see that  the last two terms in (A.10) cancel  as X ~ c, while 
6 o, f rom (A.9), tends  to a f inite non-zero  l imit .  Thus  we now have finite, non-zero  values 
for  the vor tex  coord ina tes  and s t rength  at the s t reamwise  tip. This  improvemen t  is ga ined  
at  the expense  of  a less of  genera l i ty  - since the r igh t -hand  side of  (A.10) is not  
homogeneous  in a,  the vortex height  and  s t rength no longer  scale with powers  of  a. 
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